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Ovidiu I Pâţu1,3, Vladimir E Korepin1 and Dmitri V Averin2

1 CN Yang Institute for Theoretical Physics, State University of New York at Stony Brook,
Stony Brook, NY 11794-3840, USA
2 Department of Physics and Astronomy, State University of New York at Stony Brook,
Stony Brook, NY 11794-3800, USA

E-mail: ipatu@grad.physics.sunysb.edu, korepin@max2.physics.sunysb.edu and
dmitri.averin@stonybrook.edu

Received 30 July 2007
Published 28 November 2007
Online at stacks.iop.org/JPhysA/40/14963

Abstract
We have investigated the properties of a model of 1D anyons interacting through
a δ-function repulsive potential. The structure of the quasi-periodic boundary
conditions for the anyonic field operators and the many-anyon wavefunctions is
clarified. The spectrum of the low-lying excitations including the particle–hole
excitations is calculated for periodic and twisted boundary conditions. Using
the ideas of the conformal field theory we obtain the large-distance asymptotics
of the density and field correlation function at the critical temperature T = 0 and
at small finite temperatures. Our expression for the field correlation function
extends the results in the literature obtained for harmonic quantum anyonic
fluids.

PACS numbers: 04.20.Jb, 05.30.Pr

1. Introduction

For hard-core particles moving in two spatial dimensions, one can unambiguously define
the notion of braiding of the particle trajectories by introducing the winding number n that
gives the number of times the trajectory of one particle encircles another particle. This fact
makes it possible to consider ‘anyonic’ particles with fractional exchange statistics [1, 2], for
which the wavefunction acquires the non-trivial phase factor e±i2πκ , where κ is the ‘statistical
parameter’, whenever n changes by ±1. This situation can be contrasted with the case of
three spatial dimensions where one can define only permutations (no braiding) of point-like
particles leading to only integer statistics, i.e. κ = 0, 1 for bosons and fermions, respectively.
In physical terms, the anyons in two dimensions can be viewed as the charge–flux composites
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for which the statistical phase arises as the result of the Aharonov–Bohm interaction between
the charge of one particle and the flux of the other [3]. Experimentally, anyons can be realized
as quasiparticles of the two-dimensional (2D) electron liquids in the fractional quantum
Hall effect (FQHE) [4]. Individual quasiparticles are localized and controlled by quantum
antidots in the FQHE regime [5], and the transport properties of multi-antidot systems should
provide direct manifestations of their fractional exchange statistics [6]. Dynamics of individual
FQHE quasiparticles attracted considerable attention (see, e.g., [7, 8]) as a possible basis for
realization of the topological quantum computation [9].

Both conceptually and in practice (e.g., in FQHE systems), the 2D anyons can be confined
to move in one dimension. There are, however, the aspects of fractional statistics in one
dimension that make its introduction more complicated than in two dimensions. One is that
for strictly 1D particles, a trajectory of one particle cannot wind around another, making the
sign of the exchange phase e±iπκ sgn(xi−xj )/2 that the wavefunction should acquire when the
particle with coordinate xi moves past the one with xj , undetermined. The sign of this phase
depends on whether xi rotates clockwise or counter clockwise around xj in the underlying
2D geometry, which also explains why the signs of the phase change at xi = xj are opposite
for the two particles in the pair: rotation of one sense for increasing coordinate xi implies the
opposite rotation for increasing xj . This fact hindered the early attempts at direct introduction
of the 1D anyons as charge–flux composites [10, 11]. It implies that any description of the
1D anyons requires an additional convention on the choice of the sign of the statistical phase
for each pair of particles. As discussed in more details below, this choice can be arbitrary and
affects the appropriate boundary conditions of the quantum-mechanical wavefunctions of the
system of anyons.

Another complicating aspect of the fractional statistics in 1D is the interplay between
the two types of statistics, exchange statistics discussed in the preceding paragraph and the
exclusion statistics defined through the volume of the phase-space occupied by one particle
[12]. The exclusion statistics provides effective description of the dynamic interaction of
particles, while the exchange statistics is associated with the ‘real’ non-thermodynamic
statistical effects that continue to exist in the limit of hard-core particles with infinite repulsion.
The model of 1D anyons with δ-function interaction considered in this work contains both types
of effects, and the interplay between them can be seen in equation (25) for the renormalization
of the dynamic particle–particle interaction by the exchange statistics. The renormalized
interaction determines the thermodynamics of the model and can be expressed in terms of the
exclusion statistics. However, in the hard-core limit c → ∞, effective interaction constant is
essentially independent of the exchange statistics, and the main features of the thermodynamics
of the model coincide with that of free fermions. There are still anyonic effects (e.g., the shift
of the quasiparticle momenta by the parameter of the exchange statistics κ) in this limit.

The purpose of this work is to provide a systematic description of the ground state, low-
lying excitations and the asymptotics of the correlation function of the gas of 1D anyons with
the δ-function repulsion. In the form used below, the model was introduced by Kundu [13],
who also provided the Bethe-Ansatz solution. It was further analyzed recently by Batchelor
et al [14–16]. The model is an anyonic extension of the Bose gas with δ-function interaction
solved by Lieb and Liniger [17]. The anyon gas reduces to the Bose gas in the limit when
the statistical parameter κ vanishes. In general, the Bethe equations for anyons are equivalent
to the Bethe equations for bosons with two effects of the statistics κ: renormalized coupling
constant, and a twist in the boundary conditions. This makes it possible for us to use some of
the known results for the Bose gas in the discussion of anyons. (Detailed description of the
Bose gas with δ-function interaction including the correlation functions can be found in [18].)
The main results of our work are the formulae (77), (82) for the density correlation function
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and (87), (92) for the field correlation function. Expressions for the field correlators extend the
results of Calabrese and Mintchev [19] obtained in the harmonic fluid approach by including
the higher-order terms that correspond to particle–hole excitations. Also, the conformal field
theory approach we use provides immediate generalization of the zero-temperature correlators
to finite temperatures.

There are other 1D models of anyons in the literature. Liguori, Mintchev and Pilo [20]
investigated the momentum distribution of a more general gas of free anyons and predicted
anyon condensation in a certain range of the statistical parameter. Ilieva and Thirring [21]
studied the Hilbert space structure of the anyonic field, and showed that for a fixed statistical
parameter it can be represented as an orthogonal sum of sectors with different numbers of
particles. The Hilbert space of our model has the same structure.

The paper is organized as follows. Sections 2 introduces the field theoretical model of
the 1D gas of anyons with periodic and twisted boundary conditions. Equivalent quantum-
mechanical problem is formulated in section 3. In section 4, we discuss the properties of
the ground state, and in section 5 calculate the finite-size corrections for the ground state and
properties of the low-lying excitations. In section 6, using the conformal field theory approach
we find the large-distance asymptotics for the zero-temperature density and field correlation
functions and correlators at small finite temperatures. Appendix A presents the discussion
of the boundary conditions for many-anyonic wavefunctions used in section 3. Appendix B
describes the calculation of the energy and momentum of particle–hole excitations for periodic
and twisted boundary conditions.

2. The Lieb–Liniger gas of anyons

We consider a gas of anyons with δ-function interaction in one dimension characterized by
the Hamiltonian

H =
∫ L

0
dx

{[
∂x�

†
A(x)

]
[∂x�A(x)] + c�

†
A(x)�

†
A(x)�A(x)�A(x)

}
, (1)

where c > 0 is the coupling constant and L the length of the system. The anyonic fields obey
the equal-time commutation relations

�A(x1)�
†
A(x2) = e−iπκε(x1−x2)�

†
A(x2)�A(x1) + δ(x1 − x2), (2)

�
†
A(x1)�

†
A(x2) = eiπκε(x1−x2)�

†
A(x2)�

†
A(x1), (3)

�A(x1)�A(x2) = eiπκε(x1−x2)�A(x2)�A(x1), (4)

where

ε(x1 − x2) =
⎧⎨
⎩

1 when x1 > x2,

−1 when x1 < x2,

0 when x1 = x2.

(5)

In the original work [13] introducing this model, the anyonic fields were realized in terms of
the bosonic fields

�
†
A(x) = �

†
B(x) eiπκ

∫ x

0 dx ′ρ(x ′), �A(x) = e−iπκ
∫ x

0 dx ′ρ(x ′)�B(x), (6)

where

ρ(x) ≡ �
†
A(x)�A(x) = �

†
B(x)�B(x). (7)

Due to the fact that at coinciding points ε(0) = 0, the commutation relations (2)–(4) are
indeed bosonic. An alternative realization in terms of the fermionic fields was proposed
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in [22]. However, in this case, the interaction term in the Hamiltonian (1) vanishes, since
�2

A(x) = [
�

†
A(x)

]2 = 0 in coinciding points (see also the discussion in [16]). One implication
of this difference is that in comparison to the bosonic representation (6), similar fermionic
representation with appropriate modification of the statistical parameter, effectively makes it
possible to describe only the infinite repulsion limit c → ∞.

Characteristics of the anyonic gas (1) depend on the boundary conditions imposed on the
system at x = 0 = L. In this work, we use two different quasiperiodic boundary conditions
which impose periodicity either directly on the anyonic or on the bosonic fields. Equations (6)
imply that the periodic boundary condition for anyons correspond to twisted boundary
conditions for bosons and viceversa. In terms of the anyonic fields, the boundary condition
we use are

periodic BC: �
†
A(0) = �

†
A(L) (8)

and

twisted BC: �
†
A(0) = �

†
A(L) e−iπκ(N−1), (9)

where N is the number of particle in the system. One can see directly from equation (6) that
the external phase shift πκ(N − 1) introduced into the conditions (9), ensures the periodicity
of the bosonic fields. As will be shown in more details below, this means that this phase
removes the anyonic shift of the quasiparticle momenta. Below, we use the common notation
for the two types of boundary conditions:

�
†
A(0) = �

†
A(L) e−iπβκ(N−1), β = 0, 1. (10)

An important difference of the anyons with fractional exchange statistics from the integer-
statistics particles is that the boundary conditions (10) for the fields do not translate directly
into the same boundary conditions for the quantum-mechanical wavefunctions of the N-anyon
system [6], which have more complicated structure (23) derived in appendix A.

The corresponding equation of motion −i∂t�A(x, t) = [H,�A(x, t)] for the boundary
conditions (10) is the nonlinear Schrödinger equation

i∂t�A(x, t) = ∂x�A(x, t) + 2c�
†
A(x, t)�2

A(x, t). (11)

The number of particle operator Q and the momentum operator P are defined as

Q =
∫ L

0
dx �

†
A(x)�A(x), (12)

P = − i

2

∫ L

0
dx

(
�

†
A(x)∂x�A(x) − [

∂x�
†
A(x)

]
�A(x)

)
. (13)

Both of them are Hermitian operators which commute with the Hamiltonian

[H,P ] = [H,Q] = 0. (14)

If we define the Fock vacuum as

�A(x)|0〉, x ∈ [0, L], (15)

the N-particle eigenstate of the Hamiltonian (and also of P and Q) can be then written as

|ψ〉N =
∫

dNx e− iπκN
2 χN(x1, . . . , xN)�

†
A(x1) · · · �†

A(xN)|0〉, (16)

where the many-body wavefunction obeys

χN(x1, . . . , xi, xi+1, . . . , xN) = e−iπκε(xi−xi+1)χN(x1, . . . , xi+1, xi, . . . , xN). (17)
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This can be seen directly by using the exchange relation of the field operators
�

†
A(xi)�

†
A(xi+1) = eiπκε(xi−xi+1)�

†
A(xi+1)�

†
A(xi) and interchanging the name of the integration

variables xi, xi+1. Iterating the exchanges several times we obtain

χN(x1, . . . , xi, . . . , xj , . . . , xN)

= e−iπκ[
∑j

k=i+1 ε(xi−xk)−
∑j−1

k=i+1 ε(xj −xk)]χN(x1, . . . , xj , . . . , xi, . . . , xN). (18)

Equation (18) was first obtained in [13].

3. The equivalent quantum-mechanical problem

In [13, 16], it was shown that the eigenvalue problem (for periodic boundary conditions)

H |ψ〉N = EN |ψ〉N, P |ψ〉N = pN |ψ〉N (19)

can be reduced to the quantum-mechanical problem

HχN = ENχN, PχN = pNχN, (20)

where

HN =
N∑

j=1

(
− ∂2

∂x2
j

)
+ 2c

∑
1�j�k�N

δ(xj − xk), (21)

P =
N∑

j=1

(
− ∂

∂xj

)
. (22)

These considerations also hold for twisted and all cyclic boundary conditions for field
operators. The boundary conditions for the quantum-mechanical wavefunctions of N anyons
are (see [6] and appendix A)

χN(0, x2, . . . , xN) = eiπβκ(N−1)χN(L, x2, . . . , xN),

χN(x1, 0, . . . , xN) = e−i2πκ eiπβκ(N−1)χN(x1, L, . . . , xN),

...

χN(x1, x2, . . . , 0) = e−i2Nπκ eiπβκ(N−1)χN(x1, x2 . . . , L),

(23)

where, as defined above, β = 0, 1 for periodic and twisted boundary conditions (10).
Using the coordinate Bethe Ansatz [13, 14, 16] we can obtain the eigenfunctions of the

Hamiltonian (21) as

χN = e−i πκ
2

∑
j<k ε(xj −xk)√

N !
∏

j>k[(λj − λk)2 + c′2]

∑
P

(−1)[P] ei
∑N

n=1 xnλPn

∏
j>k

[λPj
− λPk

− ic′ε(xj − xk)],

(24)

where −1[P] is the signature of the permutation and

c′ = c

cos(πκ/2)
(25)

is the coupling constant renormalized by the exchange statistics. The eigenvalues of the
Hamiltonian and momentum operators are EN = ∑N

j=1 λ2
j and pN = ∑N

j=1 λj , respectively.
For the boundary conditions (23) we obtain the Bethe equations

eiλj L = eiπ(1−β)κ(N−1)

N∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (26)
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The Bethe equations (26) are similar to those obtained by Lieb and Liniger for the Bose gas
with repulsive δ-function interaction. In our case, however, the effective coupling constant c′

(25) can take negative values. While it can be shown (see, e.g., [18]) that the Bethe roots λj

are real for c′ > 0 , the roots can become complex for c′ < 0, and one gets bound states [23].
In this work, we will consider only the case c′ > 0.

4. Properties of the ground state

Bethe equations (26) can also be written as

λjL +
N∑

k=1

θ(λj − λk) = 2πnj + πκ(1 − β)(N − 1), j = 1, . . . , N, (27)

where

θ(λ) = i ln

(
ic′ + λ

ic′ − λ

)
, (28)

and nj are integers when N is odd and half-integers when N is even.

4.1. Twisted boundary conditions

In this case (β = 1), the Bethe equations are similar to those for the Bose gas with periodic
boundary conditions [17, 18] with c′ as a coupling constant. The ground state is characterized
by the set of integers (half-integers) nj = j − (N + 1)/2, so the Bethe equations take the form

λB
j L +

N∑
k=1

θ
(
λB

j − λB
k

) = 2π

(
j − N + 1

2

)
, j = 1, . . . , N. (29)

From now on the superscript B will mean that the variables and physical quantities are the
same as those for the Bose gas with periodic boundary conditions and coupling constant c′. In
the thermodynamic limit N,L → ∞,D = N/L = const, the Bethe roots become dense and
fill the symmetric interval [−q, q]. The density of roots in this interval obeys the Lieb-Liniger
integral equation

ρ(λ) − 1

2π

∫ q

−q

K(λ, µ)ρ(µ) dµ = 1

2π
, (30)

where K(λ,µ) = θ ′(λ − µ) = 2c′/(c′2 + (λ − µ)2). The Fermi momentum q can be obtained
from the Lieb–Liniger integral equation and the particle density is

D = N

L
=

∫ q

−q

ρ(λ) dλ. (31)

Finally, the energy and the momentum of the ground state are

EB
0 = L

∫ q

−q

λ2ρ(λ) dλ, P B
0 = 0. (32)

4.2. Periodic boundary conditions

This is the case treated in [14–16]. The Bethe equations (27) in this case (β = 0) are similar
to those for the Bose gas with twisted boundary conditions:

λjL +
N∑

k=1

θ(λj − λk) = 2πnj + πκ(N − 1), j = 1, . . . , N. (33)
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Introducing the notation {[· · ·]} such that

{[x]} = γ, if x = 2π × integer + 2πγ, γ ∈ [0, 1), (34)

we can describe the ground state by the following set of the Bethe equations

λjL +
N∑

k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πδ, j = 1, . . . , N, (35)

where δ = {[πκ(N − 1)]}. Comparison of equations (35) and (29) shows that we have the
following connection between the Bethe roots for periodic and twisted boundary conditions:

λj = λB
j + 2πδ/L. (36)

This relation is exact and holds also for the excited states if the (half)integers in the Bethe
equations are the same. In the periodic case, the ground state is shifted by 2πδ/L, so that the
Bethe roots are now distributed in the interval [−q + 2πδ/L, q + 2πδ/L], and momentum of
the ground state P0 in general does not vanish,

P0 =
N∑

i=1

λi =
N∑

i=1

(
λB

i + 2πδ
/
L

) = 2πDδ. (37)

The ground-state energy is

E0 =
N∑

i=1

λ2
i =

N∑
i=1

((
λB

i

)2
+

4πδλB
i

L
+

(2πδ)2

L2

)
= EB

0 +
D(2πδ)2

L
, (38)

where we have used that the total momentum in the case of twisted boundary conditions is
zero and EB

0 in the thermodynamic limit is given by equation (32).

5. Finite-size corrections

In this section, we are going to calculate the finite-size corrections for the energy of the ground
state and characteristics of the low-lying excitations. Based on the results of this section, we
will be able to find the large-distance asymptotics of the correlations functions using conformal
field theory. A chemical potential h is added to the Hamiltonian (1) throughout this section,
so that the total Hamiltonian is

Hh =
∫ L

0
dx

{[
∂x�

†
A(x)

]
[∂x�A(x)] + c�

†
A(x)�

†
A(x)�A(x)�A(x) − h�

†
A(x)�A(x)

}
. (39)

5.1. Finite-size corrections for the ground-state energy

As we have seen in the previous section, the ground state of the gas of anyons with twisted
boundary conditions (β = 1) is characterized by the same set of Bethe equations as the Bose
gas with coupling constant c′ and periodic boundary conditions. So in this case we can use
the results for the Bose gas [18, 24–28]:

EB
0 = L

∫ q

−q

ε0(λ)ρ(λ) dλ − πvF

6L
+ O

(
1

L2

)
, (40)

where ε0(λ) = λ2 − h and vF is the Fermi velocity for the Bose gas with coupling constant
c′. In the case of periodic boundary conditions (β = 0), equation (38) then gives

E0 = L

∫ q

−q

ε0(λ)ρ(λ) dλ − πvF

6L
+

D(2πδ)2

L
+ O

(
1

L2

)
. (41)
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5.2. Low-lying excitations

In our discussion of the low-lying excitations, we consider several different types of excitation
processes:

• Addition of a finite number �N of particles into the ground state of the system.

• Backscattering: all integers nj in the set {nj } characterizing the ground-state distribution
are shifted by an integer d.

• Particle–hole excitations: the integer nj that characterizes the particle at the Fermi surface
is modified from its value in the ground-state distribution by N+ for the particle with
momentum q (or q + 2πδ/L, depending on the boundary conditions) or by N− at the
opposite point of the Fermi surface with momentum −q, (−q + 2πδ/L).

The central feature of the gas of anyons is that the boundary conditions for the field
operators and the wavefunctions depend on the number of particles in the system. This means
that any modification of the number of particles in the system changes the Bethe equations
and, as a result, the quasiparticle momenta given by the Bethe roots. If we add one particle to
the system of N particles, the boundary conditions are

χN+1(0, x2, . . . , xN , xN+1) = eiπβκ(N−1)χN+1(L, x2, . . . , xN , xN+1),

χN+1(x1, 0, . . . , xN , xN+1) = e−i2πκ eiπβκ(N−1)χN+1(x1, L, . . . , xN , xN+1),

... (42)

χN+1(x1, x2, . . . , 0, xN+1) = e−i2Nπκ eiπβκ(N−1)χN+1(x1, x2 . . . , L, xN+1),

χN+1(x1, x2, . . . , xN , 0) = e−i2(N+1)πκ eiπβκ(N−1)χN+1(x1, x2, . . . , xN , L),

and the Bethe equations become

eiλj L = eiπκN e−iπβκ(N−1)

N+1∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (43)

The ground states for N and (N + 1) particles are characterized by the Bethe roots satisfying
different equations

λjL +
N∑

k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πω, j = 1, . . . , N,

λ̃jL +
N+1∑
k=1

θ(λ̃j − λ̃k) = 2π

(
j − N + 2

2

)
+ 2πω′, j = 1, . . . , N + 1,

(44)

where

ω = 0, ω′ = κ/2, and ω = {[πκ(N − 1)]}, ω′ = {[πκN ]},
for the twisted (β = 1) and periodic (β = 0) boundary conditions, respectively, and {[· · ·]} is
defined by equation (34). Comparing equation (44) with equation (29) we see that

λj = λB
jN + 2πω/L, λ̃j = λB

j,N+1 + 2πω′/L, (45)

where λB
jN are the Bethe roots characterizing the ground state of a gas of N bosons with

periodic boundary conditions and coupling constant c′.
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5.2.1. Addition of one particle to the system. For excitations of this type we assume that
both before and after the addition of a particle, the system is in the ground state. In order to
calculate the energy and momentum of this excitation, we use equation (45) which enables one
to express energy and momentum through corrections to the same characteristics of excitations
of the Bose gas.

For the energy we get from equation (45):

�E(�N = 1) =
N+1∑
j=1

ε0(λ̃j ) −
N∑

j=1

ε0(λj )

= �EB(�N = 1) + (N + 1)

(
2πω′

L

)2

− N

(
2πω

L

)2

, (46)

where �EB (�N = 1) is the energy of the corresponding bosonic excitation. As known in
the literature (see, e.g., [18, 24, 25, 27, 28]) it is convenient to express this energy in terms of
the ‘dressed charge’ Z(λ):

�EB(�N = 1) = 2πvF

L

(
1

2Z

)2

, (47)

where Z = Z(q) = Z(−q), and Z(λ) is defined as solution of the equation

Z(λ) − 1

2π

∫ q

−q

K(λ, µ)Z(µ) dµ = 1. (48)

From (46) and (47) we obtain

�E(�N = 1) = 2πvF

L

(
1

2Z

)2

+ (N + 1)

(
2πω′

L

)2

− N

(
2πω

L

)2

. (49)

The momentum of the excitation is

�P(�N = 1) =
N+1∑
j=1

λ̃j −
N∑

j=1

λj = (N + 1)
2πω′

L
− N

2πω

L
, (50)

where we again used the fact that for the ground state of bosons with periodic boundary
conditions and any number of particles the total momentum is vanishing.

5.2.2. Backscattering. The uniform shift of the ground-state distribution in a backscattering
process can be understood as a jump of some number d of particles between the opposite
boundaries of the Fermi surface. The Bethe equations relevant for this process (in the case of
N and (N + 1) particles in the ground state) take the form

λd
j L +

N∑
k=1

θ
(
λd

j − λd
k

) = 2π

(
j − N + 1

2

)
+ 2πd + 2πω, j = 1, . . . , N,

λ̃d
j L +

N+1∑
k=1

θ
(
λ̃d

j − λ̃d
k

) = 2π

(
j − N + 2

2

)
+ 2πd + 2πω′, j = 1, . . . , N + 1.

(51)

Again, comparison with equation (29) shows that

λd
j = λB

jN + 2π(ω + d)/L, λ̃d
j = λB

j,N+1 + 2π(ω′ + d)/L, (52)

and the ground states are characterized by equation (45). Using equations (45) and (52) we
get the excitation energy:
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N particles: �E(d) =
N∑

j=1

(
ε0

(
λd

j

) − ε0(λj )
) = N

(2πω + 2πd)2

L2
− N

(2πω)2

L2
, (53)

N + 1 particles: �E(d) =
N+1∑
j=1

(
ε0

(
λ̃d

j

) − ε0(λ̃j )
)

= (N + 1)
(2πω′ + 2πd)2

L2
− (N + 1)

(2πω′)2

L2
. (54)

This result can be rewritten using the relation Z2 = 2πD/vF (see [18, chapter I.9]) obtaining

N particles: �E(d) = 2πvF

L
Z2(d + ω)2 − 2πvF

L
Z2ω2,

N + 1 particles: �E(d)= 2πvF

L
Z2(d + ω′)2 − 2πvF

L
Z2ω′2 +

(2πω′ + 2πd)2

L2
− (2πω′)2

L2
.

(55)

The momentum of the backscattering excitation is simply

�P(d) = N(2πd/L), (56)

the expression that is valid for any number of particles N.

5.2.3. Particle–hole excitations at the Fermi surface. In this case, the excitations we consider
consist in changing the maximal (minimal) nj in the ground state by N±. For N particles and
‘excitation magnitude’ N+ the Bethe equations are

λjL +
N∑

k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πω, j = 1, . . . , N − 1,

λNL +
N∑

k=1

θ(λN − λk) = 2π

(
N − N + 1

2

)
+ 2πω + 2πN+.

(57)

From (57) we see that the momentum of the excitation N+ is �P(N+) = 2πN+/L and,
similarly, for the excitation N− the momentum is �P(N−) = −2πN−/L. These excitation
can be considered as a special case of the general particle–hole excitations, and we can use the
results of appendix B for them. Using (B.7) we see that the excitation energy and momentum

�E(N±) = 2πvF

L
N± + O

(
1

L2

)
, �P (N±) = ±2π

L
N±, (58)

coincide with those for the similar excitations of the Bose gas (see appendix I.4 of [18]):

�EB(N±) = 2πvF

L
N±, �P B(N±) = ±2π

L
N±. (59)

For (N + 1) particles, the energy and momentum of the excitations are given by the same
expressions as in (58).

6. Large-distance asymptotics of correlation functions

In this section, we calculate the asymptotics of the correlation functions. We will consider the
case of twisted boundary conditions (β = 1), or the periodic boundary conditions (β = 0)

when κ is a integer multiple of 2/(N −1), so that the shift in (36) vanishes, δ = 0, and the two
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boundary conditions are equivalent (see (10)). The main feature of this case that is important
for the direct applicability of the conformal field theory approach is that the momentum of
the ground state (37) of the gas of anyons is zero for these boundary conditions. For general
gapless (1+1)-dimensional systems, T = 0 is a critical point making the correlation functions
decay as a power of distance at T = 0 but exponentially at T > 0. As we have seen in the
previous section, the Lieb-Liniger anyonic gas is gapless and the excitation spectrum has a
linear dispersion law in the vicinity of the Fermi level. These features support the expectation
that the critical behavior of the anyon system is described by conformal field theory (CFT).

CFT is a vast subject and we refer the reader to [29–32] and [18, chapter XVIII] for more
information. A conformal theory is characterized by the central charge c (not to be confused
with the coupling constant in (1)) of the underlying Virasoro algebra, and conformal invariance
constrains the critical behavior of the systems under consideration. The critical exponents
(the powers that characterizes the algebraic decay at T = 0) are related to the conformal
dimensions of the operators within the CFT, so to obtain the complete information about the
critical behavior of the system we need to calculate the central charge and the conformal
dimensions of the primary fields.

6.1. Central charge

In order to find the central charge we use the fact that for unitary conformal theories it can
be found from the finite-size corrections, specifically the coefficient of the 1/L term in the
expansion of the ground-state energy for L → ∞ [33, 34]:

E = Lε∞ − πvF

6L
c + O

(
1

L

)
. (60)

Comparing this relation to equation (40) valid for the boundary conditions we are assuming
in this section, we see that the central charge c = 1. The fact that the central charge c = 1
means that the critical exponents can depend continuously on the parameters of the model
[29, 35, 36].

6.2. Conformal dimensions from finite-size effects

Following the original idea of Cardy [37] subsequently developed in [24, 25, 27], we obtain
below the conformal dimensions of the conformal fields in the theory from the spectrum of
the low-lying excitations described in the previous section. The local fields of the model can
be represented as a combination of conformal fields

φ(x, t) =
∑
Q

˜̃A(Q)φQ(z, z̄), (61)

where ˜̃A(Q) are some coefficients and z = ix + vF τ , with vF the Fermi velocity and τ

the Euclidean time. The conformal fields are related to excitations with quantum numbers
Q = {�N,N±, d}, where �N represents the number of particles created by the field φ, and
all the fields in the expansion (61) should have the same �N . The quantum number d gives the
number of particles backscattered across the Fermi ‘sphere’, and N± characterizes the change
of the maximal or minimal nj in the Bethe equations from its values in the ground state. While
�N has to be the same for all the terms in the expansion, d and N± can be different.

For two conformal fields, φQ and φQ′ , with the same conformal dimensions denoted �±,
their correlation function is given by

〈φQ(z1, z̄1)φQ′(z2, z̄2)〉 = 1

(z1 − z2)2�+
(z̄1 − z̄2)2�− . (62)
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Under a conformal transformation z = z(w), z̄ = z̄(w̄), it transforms like

〈φQ(w1, w̄1)φQ′(w2, w̄2)〉 =
2∏

j=1

(
∂zj

∂wj

)�+ (
∂z̄j

∂w̄j

)�−

× 〈φQ(z1(w1), z̄1(w̄1))φQ′(z2(w2), z̄2(w̄2))〉. (63)

Using the expansion (61), the fact that the two conformal fields with different conformal
dimensions are orthogonal (their correlation function is zero), and (62) we then have

〈φ(z1, z̄1)φ(z2, z̄2)〉 =
∑
Q

Ã(Q)

(z1 − z2)
2�+

Q(z̄1 − z̄2)
2�−

Q

, (64)

which is valid in the whole complex plane without the origin (z1 �= z2). Conformal mapping
of this plane to a cylinder (periodic strip) with the help of transformation

z = e2πw/L, w = ix + vF τ with 0 < x � L, (65)

applied to (63) gives

〈φ(w1, w̄1)φ(w2, w̄2)〉 =
∑
Q

Ã(Q)

(
π/L

sinh[π(w1 − w2)/L]

)2�+
Q

×
(

π/L

sinh[π(w̄1 − w̄2)/L]

)2�−
Q

, (66)

with the asymptotics

〈φ(w1, w̄1)φ(w2, w̄2)〉 ∼
∑
Q

e− 2πvF
L

(�+
Q+�−

Q)(τ1−τ2)−i 2π
L

(�+
Q−�−

Q)(x1−x2). (67)

Comparison with the spectral decomposition of the correlation function in the periodic strip
(τ1 > τ2)

〈φ(w1, w̄1)φ(w2, w̄2)〉L =
∑
Q

|〈0|φ(0, 0)|Q〉|2 e−(EQ−E0)(τ1−τ2)−i(PQ−P0)(x1−x2), (68)

where |0〉 is the ground state and E0, P0 are the energy and momentum of the ground state,
respectively, leads to

EQ − E0 = 2πvF

L

(
�+

Q + �−
Q

)
, PQ − P0 = 2π

L

(
�+

Q − �−
Q

)
, (69)

assuming that both the energy and momentum gaps are of order O(1/L). However, as we
have seen in Sect. 5, for some of the excitations considered (addition of a particle in the
system, �N = 1, backscattering processes characterized by d, and particle–hole excitations
at the Fermi surface characterized by N±), the momentum gap is macroscopic. For example,
if Q = {�N = 0, d �= 0, N± = 0}, the momentum gap is 2kF d, kF ≡ πD, and for
Q = {�N = 1, d = 0, N± = 0} the momentum gap is πkF κ + πκ/L. For these excitations,
following [24, 25, 27], the coefficients Ã(Q) will depend on x as

Ã(Q) = A(Q) eipQx, (70)

where pQ is the macroscopic part of the momentum gap PQ − P0. From (64) and (70) we
obtain the generic formula for the asymptotics of correlations functions at T = 0

〈φ(x, t)φ(0, 0)〉 =
∑
Q

A(Q) eipQx

(ix + vF τ)2�+
Q(−ix + vF τ)2�−

Q

, (71)

where �±
Q can be found from (69) and the leading term corresponds to the smallest �±

Q.
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We also can find the low-temperature asymptotics of the correlation functions if we use
instead of the conformal mapping (65), the mapping

z = e2πT w/vF , z = x − ivF τ, (72)

which differ from (65) by interchanging the space and time variables. The computations are
similar to those described above for the correlation functions in a finite box, and the final result
is

〈φ(x, t)φ(0, 0)〉T =
∑
Q

B(Q) eipQx

(
πT/vF

sinh[πT (x − ivF τ)/vF ]

)2�+
Q

×
(

πT/vF

sinh[πT (x + ivF τ)/vF ]

)2�−
Q

. (73)

This result is valid only at temperatures close to zero.

6.3. Density correlation function

In the case of the density correlation function, 〈j (x, t)j (0, 0)〉, where j (x) = �
†
A(x)�A(x),

we have �N = 0 so the most general excitation is constructed by backscattering d particles
and creating a particle–hole pair at the Fermi surface characterized by N±. Making use of
(55), (56), (58), we obtain for the energy and momentum gap of the excitation characterized
by Q = {�N = 0, d,N±}:

PN±,d − P0 = 2kF d +
2π

L
(N+ − N−), (74)

EN±,d − E0 = 2πvF

L
[(Zd)2 + N+ + N−]. (75)

Here we have taken into account only the terms of order 1 and O(1/L). Equation (69) gives
the conformal dimensions

2�±
Q = 2N± + (Zd)2, (76)

and from the general formula (71)

〈j (x, t)j (0, 0)〉 − 〈j (0, 0)〉2 =
∑

Q={N±,d}
A(Q)

e2ixkF d

(ix + vF τ)2�+
Q(−ix + vF τ)2�−

Q

. (77)

Defining θ ≡ 2Z2 = 4πD/vF , where Z = Z(−q) = Z(q), and Z(λ) given by the
integral equation (48), the leading terms are

〈j (x, t)j (0, 0)〉 − 〈j (0, 0)〉2 = a

(ix + vF τ)2
+

a

(−ix + vF τ)2
+ b

cos(2kF x)

|ix + vF τ |θ . (78)

For equal times, equation (77) takes the form

〈j (x, 0)j (0, 0)〉 − 〈j (0, 0)〉2 =
∑

Q={N±,d}
Â(Q)

e2ixkF d

|x|d2θ+2N++2N− . (79)

The presence of the oscillatory terms in this expression can be explained by the following
simple computation [27]:

〈j (x, 0)j (0, 0)〉 =
∑
Q

〈0|j (x, 0)|Q〉〈Q|j (0, 0)|0〉 =
∑
Q

|〈0|j (0, 0)|Q〉|2 ei(PQ−P0)x

=
∞∑

d=−∞
ei2kF dx

∑
N±

|〈0|j (0, 0)|d,N±〉|2 e
i2πx

L
(N+−N−), (80)
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where in the second line, we broke the sum over Q into disjoint sums characterized by
different macroscopic momenta. The second part of the sum gives the power-law decay for
k−1
F 
 x 
 L. The formulae (77) and (79) are the same as in the case of a Bose gas with

coupling constant c′ = c/cos(πκ/2) and periodic boundary conditions [27] (see chapter XVII
of [18]). This situation is expected, since

j (x) = �
†
A(x)�A(x) = �

†
B(x)�B(x). (81)

Finally, from (73), the finite temperature density correlation function is

〈j (x, t)j (0, 0)〉T =
∑

Q={d,N±}
B(Q) ei2kF dx

(
πT/vF

sinh[πT (x − ivF τ)/vF ]

)2�+
Q

×
(

πT/vF

sinh[πT (x + ivF τ)/vF ]

)2�−
Q

, (82)

with �±
Q given by (76).

6.4. Field-field correlator

In contrast to the density correlators, for the field correlator 〈�A(x, t)�
†
A(0, 0)〉, one has

�N = 1. For the ground states with N and (N + 1) particles and the boundary conditions
considered in this section the Bethe equations are

λjL +
N∑

k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
, j = 1, . . . , N,

λ̃jL +
N+1∑
k=1

θ(λ̃j − λ̃k) = 2π

(
j − N + 2

2

)
+ πκ, j = 1, . . . , N + 1.

(83)

The shift πκ in the second equation implies that the anyonic wavefunctions for N and (N + 1)

particles live in two orthogonal sectors of the Hilbert space. The addition of one particle
produces in this case a macroscopic change in the momentum, πkF κ + πκ/L, which gives
rise to oscillations even in the dominant term of the field correlator.

The most general excitation is obtained by an addition of one particle to the system,
followed by the backscattering of d particles and creation of a particle–hole pair at the
Fermi surface. Using the results (49), (50), (55), (56), (58) with ω = 0, ω′ = κ/2, we
obtain the following expressions for the energy and momentum gaps of an excitation with
Q = {�N = 1, d,N±} (retaining, as before, the terms of order 1 and O(1/L)):

P �N=1
N±,d − P0 = 2kF (d + κ/2) +

2π

L
[(d + κ/2) + N+ − N−], (84)

E�N=1
N±,d − E0 = 2πvF

L

[(
1

2Z

)2

+ Z2(d + κ/2)2 + N+ + N−
]

, (85)

so the conformal dimensions are

2�±
Q = 2N± +

(
1

2Z
± Z(d + κ/2)

)2

. (86)

From equation (71), the field correlator is〈
�A(x, t)�

†
A(0, 0)

〉 =
∑

Q={N±,d}
A(Q)

e2ikF (d+ κ
2 )x

(ix + vF τ)2�+
Q(−ix + vF τ)2�−

Q

, (87)
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or in the equal-time case〈
�A(x, 0)�

†
A(0, 0)

〉 =
∑

Q={N±,d}
Â(Q)

e2ikF (d+ κ
2 )x

|x|(d+ κ
2 )2θ+ 1

θ
+2N++2N− , (88)

where θ = 2Z2. Again, we can heuristically justify the presence of the oscillatory terms in the
correlation function in the same way as for the density correlator, but for the field correlator,
the complete set of states that is inserted between �A and �

†
A is from the sector with (N + 1)

particles〈
�A(x, 0)�

†
A(0, 0)

〉 =
∑
Q

〈0|�A(x, 0)|Q〉〈Q|�†
A(0, 0)|0〉

=
∑
Q

|〈0|�A(0, 0)|Q〉|2 ei(PQ−P0)x

=
∞∑

d=−∞
ei2kF (d+ κ

2 )x
∑
N±

|〈0|�A(0, 0)|d,N±〉|2 e
i2πx

L
(N+−N−). (89)

In this case, the terms of the correlation function containing ei2kF (d+κ/2)x that are responsible
for the oscillatory behavior at x 
 L, exhibit dependence on the statistical parameter.

Equation (87) can be compared to the result of Calabrese and Mintchev [19], who
calculated the field correlation function for anyonic gapless systems in the low-momentum
regime using the harmonic fluid approach [38, 39], obtaining

〈
�

†
A(x, 0)�A(0, 0)

〉 = D

∞∑
d=−∞

bd

e−2i(d+ κ
2 )kF x e−2i(m+ κ

2 )πε(x)/2

(Dc(x))(d+ κ
2 )22K+ 1

2K

, (90)

where D is the density, bd unknown non-universal amplitudes, c(x) = L sin(πx/L) and K
is a universal parameter that can be expressed in terms of the phenomenological velocity
parameters vN, vJ as K = √

vJ /vN . For the Lieb–Liniger anyons,

K = 2πD

vF

= θ

2
. (91)

They have checked their results in the limit c → ∞,K = 1 against the exact results of
Santachiara et al [40], who calculated the generalization of Lenard formula [41] for anyonic
statistics. We see that our conformal field theory approach agrees with the leading asymtotics
produced by the harmonic liquid approximation but also gives the higher-order terms in the
large-distance expansion.

Using the conformal mapping (72) that leads to general equation (73), we find also the
finite-temperature field correlator:

〈�A(x, t)�
†
A(0, 0)〉T =

∑
Q={d,N±}

B(Q) ei2kF (d+ κ
2 )x

(
πT/vF

sinh[πT (x − ivF τ)/vF ]

)2�+
Q

×
(

πT/vF

sinh[πT (x + ivF τ)/vF ]

)2�−
Q

, (92)

where �±
Q is given by (86).

7. Conclusions

The main result of our work is the calculation of the large-distance asymptotics of the
correlation functions of the gas of 1D anyons using the ideas of conformal field theory.
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This result requires conformal invariance close to the critical point T = 0, and the knowledge
of the finite-size corrections to the energy and momentum of the ground state of the gas due to
low-lying excitations. In the analogous case of Bose gas with δ-function repulsive interaction,
the conformal field theory predictions for the asymptotics of the correlators were checked
against the exact results for these asymptotics obtained from the determinant representations
and the differential equations for the correlation functions [18]. It would be interesting to have
similar exact results for the model studied in this paper which is a natural anyonic extension
of the Bose gas. As a first step in this direction, Santachiara, Stauffer and Cabra [40], already
obtained for the one-particle reduced density matrix (field correlator) in the impenetrable limit
a representation in terms of the determinant of a Toeplitz matrix of dimension (N−1)×(N−1)

where N is the number of particles. The exact results for the anyon correlation functions would
also be needed to extend the correlators derived in this work for essentially one type of boundary
conditions to more general quasiperiodic conditions. This problem seems particularly natural
for anyons for which the effective boundary conditions for quasiparticle momenta change with
the total number of particles in the system.
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Appendix A. Boundary conditions for the multi-anyon wavefunctions

In this appendix, we derive the exact form of the cyclic boundary conditions for the
wavefunctions of the many-anyon system. Our treatment generalizes the approach of [6]
to the case of several penetrable particles. In physical terms, the situation we consider
corresponds to anyons confined to move along a loop with, in general, an external phase shift
φ created, e.g., by a magnetic field threading the loop. We start with the case of two particles
and no external phase shift, φ = 0. The Bethe-Anzatz wavefunction (24) reduces in this case
to the following form: in the region I (x1 < x2) one has

χI(x1, x2) = eiπκ/2√
2[(λ2 − λ1)2 + c′2]

{ei(x1λ1+x2λ2)(λ2 − λ1 − ic′) + ei(x1λ2+x2λ1)(λ2 − λ1 + ic′)},

(A.1)

and in the region II (x1 > x2):

χII(x1, x2) = e−iπκ/2√
2[(λ2 − λ1)2 + c′2]

{ei(x1λ1+x2λ2)(λ2 − λ1 + ic′) + ei(x1λ2+x2λ1)(λ2 − λ1 − ic′)}.

(A.2)

The general exchange symmetry of this wavefunction given by equation (17) imply that for
fractional κ it cannot satisfy the same boundary conditions in the two coordinates. As one
can see by exchanging the coordinates, if the wavefunction is periodic in the first one, the
boundary conditions in second one should have a twist,

χ(0, x) = χ(L, x) → χ(x, 0) = χ(x, L) e−2iπκ (A.3)



Correlation functions of one-dimensional Lieb–Liniger anyons 14979

and viceversa. One consequence of this is that the exact form of the Bethe equations (26)
depends on whether we impose periodic boundary conditions on one or the other coordinate.
Indeed, if one requires periodicity in x1, χ(0, x2) = χ(L, x2), the Bethe equations are

eiLλj = eiπκ

2∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
, (A.4)

whereas the periodicity in x2, χ(x1, 0) = χ(x1, L), results in the equations that differ by the
sign of the statistics parameter κ ,

eiLλj = e−iπκ

2∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (A.5)

Since the Bethe equations determine the spectrum of the quasiparticle momenta λj through
equation (27), the κ shifts of different signs produce two physically different situations.

The origin of this difference can be traced back to the fact that the fractional statistics
requires braiding of particles, something that strictly speaking cannot be done in one dimension.
To define the braiding of 1D particles one needs to first adopt a convention on how the particles
pass each other at coinciding points, something that is done by choosing a specific sign of the
exchange phase e−iπκε(x1−x2)/2. After that, one more choice that needs to be made is how the
1D loop with anyons is imbedded into the underlying 2D anyonic system. In the case of two
particles, this choice is reflected in the possibility of choosing different boundary conditions
for two different anyonic coordinates and determines how the particle trajectories enclose each
other as the particles move along the loop [6]. As reflected in equation (A.3), periodicity in
x1 means that the trajectory of x1 does not enclose the particle x2. This implies that x1 is
itself enclosed by the trajectory of x2, producing the twist in the boundary condition for x2

variable. The different choice of the boundary condition would mean that the 1D loop in
imbedded into the 2D system in such a way that the trajectory of x1 encloses x2. This means
that the wavefunction periodicity in both variables correspond to different but valid physical
situations.

The situation is somewhat more complicated for larger number of particles, as can be
seen in the case of three particles. In the wavefunction (24), one needs to distinguish then six
regions corresponding to the six permutation of the particles. The wavefunction (24) in these
regions is

Region I (x1 < x2 < x3)

χI(x1, x2, x3) = A e
i3πκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 − ic′)(λ2 − λ1 − ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 − ic′)(λ3 − λ1 − ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 − ic′)(λ1 − λ3 − ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 − ic′)(λ2 − λ3 − ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 − ic′)(λ3 − λ2 − ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 − ic′)(λ1 − λ2 − ic′)}, (A.6)

Region II (x1 < x3 < x2)

χII(x1, x2, x3) = A e
iπκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 − ic′)(λ2 − λ1 − ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 − ic′)(λ3 − λ1 − ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 − ic′)(λ1 − λ3 − ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 − ic′)(λ2 − λ3 − ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 − ic′)(λ3 − λ2 − ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 − ic′)(λ1 − λ2 − ic′)}, (A.7)
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Region III (x3 < x1 < x2)

χIII(x1, x2, x3) = A e
−iπκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 + ic′)(λ2 − λ1 − ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 + ic′)(λ3 − λ1 − ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 + ic′)(λ1 − λ3 − ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 + ic′)(λ2 − λ3 − ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 + ic′)(λ3 − λ2 − ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 + ic′)(λ1 − λ2 − ic′)}, (A.8)

Region IV (x3 < x2 < x1)

χIV(x1, x2, x3) = A e
−i3πκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 + ic′)(λ2 − λ1 + ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 + ic′)(λ3 − λ1 + ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 + ic′)(λ1 − λ3 + ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 + ic′)(λ2 − λ3 + ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 + ic′)(λ3 − λ2 + ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 + ic′)(λ1 − λ2 + ic′)}, (A.9)

Region V (x2 < x1 < x3)

χV(x1, x2, x3) = A e
iπκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 − ic′)(λ2 − λ1 + ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 − ic′)(λ3 − λ1 + ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 − ic′)(λ1 − λ3 + ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 − ic′)(λ2 − λ3 + ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 − ic′)(λ3 − λ2 + ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 − ic′)(λ1 − λ2 + ic′)}, (A.10)

Region VI (x2 < x3 < x1)

χVI(x1, x2, x3) = A e
−iπκ

2 {ei(x1λ1+x2λ2+x3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 + ic′)(λ2 − λ1 + ic′)
− ei(x1λ1+x2λ3+x3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 + ic′)(λ3 − λ1 + ic′)
+ ei(x1λ3+x2λ1+x3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 + ic′)(λ1 − λ3 + ic′)
− ei(x1λ3+x2λ2+x3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 + ic′)(λ2 − λ3 + ic′)
+ ei(x1λ2+x2λ3+x3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 + ic′)(λ3 − λ2 + ic′)
− ei(x1λ2+x2λ1+x3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 + ic′)(λ1 − λ2 + ic′)}, (A.11)

where

A = 1√
6
∏

j>k[(λj − λk)2 + c′2]
. (A.12)

As discussed above for the two particles, the periodic boundary conditions can be
imposed in principle on any of the wavefunction arguments. Requiring x1 to be periodic,
χ(0, x2, x3) = χ(L, x2, x3), gives

χI(0, x2, x3) = χVI(L, x2, x3), for x2 < x3, (A.13)

χII(0, x2, x3) = χIV(L, x2, x3), for x3 < x2. (A.14)

Except for the exchange-statistics phase factors, the wavefunctions in the six regions coincide
with the wavefunctions of the Bose gas with the δ-function interaction of strength c′ (25).
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Therefore, the Bethe equations we obtain are the same as in the bosonic case with the only
difference coming from the statistical phase factors. Conditions (A.13) and (A.14) produce
six equations each, with only three of them being independent

eiLλ1 = e2iπκ

(
λ1 − λ2 + ic′

λ1 − λ2 − ic′

) (
λ1 − λ3 + ic′

λ1 − λ3 − ic′

)
,

eiLλ2 = e2iπκ

(
λ2 − λ1 + ic′

λ2 − λ1 − ic′

) (
λ2 − λ3 + ic′

λ2 − λ3 − ic′

)
, (A.15)

eiLλ3 = e2iπκ

(
λ3 − λ1 + ic′

λ3 − λ1 − ic′

) (
λ3 − λ2 + ic′

λ3 − λ2 − ic′

)
.

These equations can be written in the compact form similar to equation (26):

eiLλj = e2iπκ

3∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (A.16)

If the periodic boundary conditions are imposed on the second variable, χ(x1, 0, x3) =
χ(x1, L, x3), i.e.,

χV(0, x2, x3) = χII(L, x2, x3), for x1 < x3, (A.17)

χVI(x1, 0, x3) = χIII(x1, L, x3), for x1 > x3, (A.18)

we obtain either from (A.17) or (A.18) the following Bethe equations:

eiLλj =
3∏

k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (A.19)

Finally, if we impose periodic boundary conditions on the third variable, χ(x1, x2, 0) =
χ(x1, x2, L), i.e.,

χIII(x1, x2, 0) = χI (x1, x2, L), for x1 < x2, (A.20)

χIV(x1, x2, 0) = χV(x1, x2, L), for x2 < x1, (A.21)

the resulting Bethe equations are

eiLλj = e−2iπκ

3∏
k=1,k �=j

(
λj − λk + ic′

λj − λk − ic′

)
. (A.22)

The difference between the three forms of the Bethe equations (A.16), (A.19), (A.22)
means that the periodic boundary conditions imposed on one variable automatically require
the twisted boundary conditions on the other variables if one wants to keep the same Bethe
equations. Similarly to the case of two particles, this can also be seen directly from the
anyonic exchange symmetry (17) of the wavefunction. Suppose we set the periodic boundary
conditions on the first variable:

χ(0, x2, x3) = χ(L, x2, x3). (A.23)

Exchanging then the first two variables on both sides of equation (A.23) with the help of
equation (17), we get the twisted boundary conditions for the second variable:

χ(x2, 0, x3) = χ(x2, L, x3) e−2iπκ . (A.24)

From (A.24), using again (17) we have

χ(x2, x3, 0) = χ(x2, x3, L) e−4iπκ , (A.25)
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which are the twisted boundary conditions for the third variable which follow from the periodic
conditions on the first. From any of the boundary conditions (A.23), (A.24), (A.25) we obtain
the Bethe equations (A.16).

Similarly, periodic boundary conditions on the second variable give the following
boundary conditions for the three-anyon wavefunction:

χ(0, x2, x3) = χ(L, x2, x3) e2iπκ ,

χ(x1, 0, x3) = χ(x1, L, x2), (A.26)

χ(x2, x3, 0) = χ(x2, x3, L) e−2iπκ ,

and the Bethe equations (A.19). The same can be done starting with periodicity in the third
variable. As in the case of two particles, we see that imposing periodic boundary conditions on
the first and the last variables produces the Bethe equations, (A.16) and (A.22), which differ
only by the sign of the statistical parameter κ . As discussed in detail for the two particles,
this difference corresponds physically to different imbedding of the 1D loop of anyons into
the underlying 2D system. In the two situations, the number of particles enclosed by the
trajectories of successive particles xj , j = 1, 2, . . . , N , either increases from 0 to (N − 1)

or decreases from (N − 1) to 0, as reflected in the corresponding boundary conditions of
the multi-anyon wavefunction. In contrast to this, the requirement of periodicity of one of
the ‘internal’ variables (e.g., x2 in the case of three particles) produces the Bethe equations
and boundary conditions, e.g. (A.19) and (A.26), that do not have this interpretation. They
describe the situations with appropriate non-vanishing external phase shift φ �= 0, which
twists uniformly the boundary conditions of all the variables. In the main text of our paper,
we use the periodic boundary conditions with respect to the first variable of the anyonic
wavefunction or introduce the external twist φ = πκ(N − 1) which removes the anyonic
shift of the quasiparticle momenta. As follows from the discussion in this appendix, the
boundary conditions for the wavefunction of N anyons are given in these two situations by
equations (23).

Appendix B. Particle–hole excitation

In this appendix, we find the energy and momentum of particle–hole excitations of the gas of
anyons. As discussed in the main text, for twisted boundary conditions (β = 1), the ground
state of anyons is equivalent to that of the Bose gas with periodic boundary conditions and
coupling constant c′, so the excitation energy and momentum coincide in this case with those
known for the Bose gas (see chapter I.4 of [18]). For periodic boundary conditions (β = 0),
the Bethe equations are the same as for the Bose gas with the boundary conditions twisted by
the phase shift 2πδ, where δ = {[πκ(N − 1)]}. In the case of one hole with momentum λh

and one particle with momentum λp the equations for the ground state and the excited state
are

Ground State, PBC: λjL +
N∑

k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πδ,

j = 1, . . . , N, (B.1)

Excited State, PBC: λ̃jL +
N∑

k=1

θ(λ̃j − λ̃k) + θ(λ̃j − λp) − θ(λ̃j − λh)

= 2π

(
j − N + 1

2

)
+ 2πδ, j = 1, . . . , N. (B.2)
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Comparing the equations for a particle–hole excitation in the case of twisted boundary
conditions

Ground State, TBC: λB
j L +

N∑
k=1

θ
(
λB

j − λB
k

) = 2π

(
j − N + 1

2

)
,

j = 1, . . . , N, (B.3)

Excited State, TBC: λ̃B
j L +

N∑
k=1

θ
(
λ̃B

j − λ̃B
k

)
+ θ

(
λ̃B

j − λB
p

) − θ
(
λ̃B

j − λB
h

)

= 2π

(
j − N + 1

2

)
, j = 1, . . . , N, (B.4)

with (B.1) and (B.2), we find the following relations:

λj = λB
j + 2πδ/L, λ̃j = λ̃B

j + 2πδ/L, (j = 1, . . . , N) (B.5)

λp = λB
p + 2πδ/L, λh = λB

h + 2πδ/L. (B.6)

The energy and momentum of this excited state with respect to the ground state is
(ε0(λ) = λ2 − h),

�E(λp, λh) = ε0(λp) − ε0(λh) +
N∑

j=1

(ε0(λ̃j ) − ε0(λj ))

= ε0
(
λB

p

) − ε0
(
λB

h

)
+

N∑
j=1

(
ε0

(
λ̃B

j

) − ε0
(
λB

j

))
+ 2

2πδ

L

×
⎛
⎝λB

p − λB
h +

N∑
j=1

(
λ̃B

j − λB
j

)⎞⎠
= �EB

(
λB

p , λB
h

)
+ 2

2πδ

L
�P P

(
λB

h , λB
p

)
, (B.7)

�P(λp, λh) = �P B
(
λB

p , λB
h

)
, (B.8)

where �EB
(
λB

p , λB
h

)
and �P B

(
λB

p , λB
h

)
are the energy and momentum of a particle–hole

excitation in the Bose gas with periodic boundary conditions, and λB
h and λB

p are given
by (B.6).

From (B.7) we see that in the case of twisted boundary conditions, the Fermi velocity
vTBC

F will be the same as in the Bose gas, whereas for the periodic boundary conditions the
Fermi velocity will be modified as

vPBC
F = vTBC

F +
4πδ

L
. (B.9)
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